

MONASH ENGINEERING

Global Assessments of the Interactions between the Mining Industry and Water Resources

Stephen Northey PhD

Gavin Mudd, Nawshad Haque, Mohan Yellishetty, Tim Werner

Water accounting and reporting standards have been developed

Water Accounting Framework for the Minerals Industry

USER GUIDE Version1.3 - January 2014

SMI

Mining operations can interact with water resources in a variety of ways

Northey et al. Under review.

3

There is large variability in water use across mine sites

4

Northey et al. (2013). Journal of Cleaner Production, 40, 118-128.

All components of mine site water balances contribute to this variability

5

Northey et al. Under review.

Northey et al. Under review.

6

Mining operation water balances can vary considerably through time

Mining operation water balances can vary considerably through time

8

Northey et al. Under review.

Water Reuse Efficiency

Northey et al. Under review.

Water Discharges

The copper industry is acutely exposed to water stress

Northey et al. (2014). Minerals Engineering, 69, 65-80.

Whereas, the nickel industry is less exposed to water stress

Northey et al. (2014). Minerals Engineering, 69, 65-80.

12

Water stress, scarcity and risk can be measured in various ways

Mineral resources are located across all hydrological zones

14 Northey et al. (2017). Global Environmental Change, 44, 109-124.

Benchmarking the risks facing commodity groups is possible

Detailed datasets improve understanding of these issues

		All Resources															
						Con	tained Value (%)	Weighted Averages, Metal I						Basis			
Country	Deposit Type	No.	Mt Ore	% Cu	Mt Cu	Cu	Others Metals >5%	CRIT	SR	VSR	EI /	AWaRe	BWS	BIER	BIER-h	WDI	WSI
Afghanistan	Sediment-hosted Cu	1	240.0	2.30	5.52	100		87	100	76	84	19	2.71	0.16	0.08	0.58	0.40
Algeria	Volcanogenic Massive Sulfide	2	18.1	0.65	0.12	35	Pb, Zn, Au	57	89	39	18	9	-	0.01	0.00	0.32	0.41
Argentina	Epithermal	1	201.1	0.04	0.08	13	Pb	57	94	26	12	100	-	0.01	0.00	1.00	1.00
Argentina	Porphyry	8	7616.5	0.38	28.68	47	Au, Mo	54	70	23	56	24	0.56	0.06	0.01	0.74	0.71
Australia	Epithermal	3	29.6	0.27	0.08	40	Au	15	0	12	23	19	0.56	0.04	0.00	1.00	0.10
Australia	Iron Oxide Copper-Gold	25	10853.1	0.85	92.00	49	U3O8, Au	23	0	15	36	27	3.34	0.01	0.00	1.00	0.02
Australia	Magmatic Sulfide	12	211.2	0.44	0.92	23	Ni, Co	19	0	21	26	10	5.87	0.04	0.01	0.30	0.69
Australia	Other	15	781.2	0.24	1.88	38	Au	25	3	16	39	51	2.35	0.05	0.00	1.00	0.03
Australia	Porphyry	20	6841.3	0.22	15.17	38	Au	24	6	10	38	80	2.54	0.05	0.00	0.89	0.16
Australia	Sediment-hosted Cu	4	133.3	1.25	1.66	100		20	0	16	31	17	0.22	0.02	0.00	1.00	0.01
Australia	Sediment-hosted Pb-Zn	11	578.4	1.34	7.77	99		15	0	12	23	13	0.22	0.04	0.01	1.00	0.01
Australia	Skam	9	143.0	0.56	0.80	79	Au	18	0	16	28	7	2.38	0.03	0.01	0.49	0.01
Australia	Volcanogenic Massive Sulfide	50	721.4	0.92	6.61	72	Au	23	2	18	34	29	3.20	0.03	0.00	0.92	0.06
Bolivia	Epithermal	1	6.3	2.30	0.15	95	Zn	36	22	56	14	2	-	0.16	0.02	0.01	0.01
Bolivia	Sediment-hosted Pb-Zn	1	485.0	0.02	0.10	29	Pb, Zn, Ag	36	22	56	14	1	0.00	0.11	0.04	0.01	0.01
Botswana	Magmatic Sulfide	4	477.2	0.23	1.11	21	Ni, PGM	35	16	50	32	21	2.14	0.09	0.01	1.00	0.54
Botswana	Sediment-hosted Cu	5	810.5	0.68	5.47	99		35	16	49	31	35	0.04	0.15	0.01	0.98	0.01
Brazil	Epithermal	1	3.8	0.90	0.03	100		9	2	14	5	0	0.00	0.20	0.08	0.01	0.01
Brazil	Iron Oxide Copper-Gold	6	1806.2	0.77	13.90	70	Au	9	2	14	5	0	0.01	0.13	0.06	0.01	0.01
Brazil	Magmatic Sulfide	3	299.5	0.16	0.47	7	Ni	18	3	17	26	5	0.38	0.03	0.01	0.02	0.03
Brazil	Porphyry	1	712.8	0.23	1.61	35	Au	11	1	15	11	1	0.01	0.16	0.05	0.01	0.01
Brazil	Volcanogenic Massive Sulfide	1	33.5	0.25	0.09	10	Zn, Pb, Au	22	1	36	9	0	0.00	0.21	0.10	0.01	0.01

Industry wide assessments of water scarcity risks are possible

17 Northey et al. (2018). Journal of Cleaner Production, 184, 788-797.

Exposure to water scarcity risks varies considerably across commodities

Northey et al. (2018). Journal of Cleaner Production, 184, 788-797.

Mineral resources are distributed across all major climate regions

Climate understanding can also be used to better evaluate industry risks

Köppen-Geiger Climate Classification		Observed (Kottek et al., 2006)												
		1951-2000												
			Copper				L	ead-Zinc	Nickel					
		No.	Mt Ore	% Cu	Mt Cu	No.	Mt Ore	%Pb+Zn	Mt Pb+Zn	No.	Mt Ore	% Ni	Mt Ni	
	<u>Equatorial</u>	74	31,735	<u>0.48</u>	<u>151</u>	<u>51</u>	<u>437</u>	<u>4.98</u>	<u>22</u>	<u>129</u>	10,133	<u>1.29</u>	<u>130</u>	
Af	Fully humid	24	17,297	0.55	95	11	86	5.23	4	47	4,186	1.41	59	
Am	Monsoonal	12	9,584	0.38	36	3	49	2.24	1	29	1,639	1.16	19	
As	Summer dry	2	9	2.45	0	3	4	2.55	0	4	63	1.96	1	
Aw	Winter dry	36	4,845	0.41	20	34	298	5.39	16	49	4,245	1.20	51	
	Arid	<u>255</u>	<u>158,801</u>	<u>0.45</u>	721	<u>237</u>	13,387	2.48	<u>331</u>	<u>149</u>	18,433	<u>0.38</u>	<u>71</u>	
BSh	Steppe, hot arid	85	16,564	0.42	70	90	4,833	3.73	180	53	13,216	0.24	31	
BSk	Steppe, cold arid	49	42,196	0.35	149	60	5,996	0.94	57	22	95	1.50	1	
BWh	Desert, hot arid	68	21,940	0.63	137	74	1,887	3.19	60	73	4,690	0.68	32	
BWk	Desert, cold arid	53	78,101	0.47	365	13	671	5.09	34	1	432	1.39	6	
	Warm Temperate	<u>169</u>	<u>63,455</u>	<u>0.57</u>	<u>361</u>	<u>173</u>	<u>4,448</u>	2.60	<u>116</u>	<u>71</u>	<u>10,922</u>	<u>0.30</u>	<u>32</u>	
Cfa	Fully humid, hot summer	22	5,245	0.34	18	20	308	6.61	20	7	577	0.86	5	
Cfb	Fully humid, warm summer	37	4,710	1.04	49	70	657	4.28	28	10	382	0.82	3	
Cfc	Fully humid, cool summer	1	10	1.17	0	5	39	5.26	2	-	-	-	-	
Csa	Summer dry, hot summer	17	4,258	0.36	16	34	2,314	1.76	41	5	411	1.05	4	
Csb	Summer dry, warm summer	13	27,377	0.55	151	14	328	1.66	5	7	619	0.77	5	
Csc	Summer dry, cool summer	-	-	-	-	-	-	-	-	-	-	-	-	
Cwa	Winter dry, hot summer	65	15,813	0.70	111	17	152	7.30	11	32	6,361	0.15	10	
Crub	Winter deu werm summer	14	6.042	0.28	17	12	650	1 22	0	10	2 572	0.22	6	

Different sub-sectors of the industry may be exposed differently

CSIRO Mineral Resources primarily funded this work

RMIT University Gavin Mudd Tim Werner Zhehan Weng

<u>CSIRO</u>

Nawshad Haque Mark Cooksey Roy Lovel Universitat Autonoma de Barcelona Cristina Madrid Lopez

University of Nevada, Las Vegas Simon Jowitt

Monash University Mohan Yellishetty

References

Sustainable Water Management and Improved Corporate Reporting in Mining

Northey et al. Submitted to Resources Policy, under review.

Production weighted water use impact characterization factors for the global mining industry Northey et al. (2018). Journal of Cleaner Production, 184, 788-797. <u>https://doi.org/10.1016/j.jclepro.2018.02.307</u>

The exposure of global base metal resources to water criticality, scarcity and climate change Northey et al. (2017). Global Environmental Change, 44, 109-124. <u>http://dx.doi.org/10.1016/j.gloenvcha.2017.04.004</u>

Water footprinting and mining: Where are the limitations and opportunities? Northey et al. (2016). Journal of Cleaner Production, 135, 1098-1116. <u>http://dx.doi.org/10.1016/j.jclepro.2016.07.024</u>

Evaluating the application of water footprint methods to primary metal production systems Northey et al. (2014). Minerals Engineering, 69, 65-80. <u>http://dx.doi.org/10.1016/j.mineng.2014.07.006</u>

Using sustainability reporting to assess the environmental footprint of copper mining Northey et al. (2013). Journal of Cleaner Production, 40, 118-128. <u>http://dx.doi.org/10.1016/j.jclepro.2012.09.027</u>

Thanks for Listening! Stephen Northey PhD stephen.northey@monash.edu

Topics Covered Variability in Mine Site Water Use Water Scarcity Risks Climate

