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Mineral resources have differing spatial distributions
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Northey et al., 2017. Global Environmental Change 44: 109-124.



And face differing regional environmental contexts
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Mineral resources are situated In regions with
differing water risks,
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Across varied ecological biomes
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Proportion overlap

Within conservation areas
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And across differing climates.
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We know that the climate will change in regions
hosting mineral resources
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And that exposure differs for specific deposit types.
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Our understanding of land transformations
assoclated with mining is better than ever
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However, there’s still a lot we don’t know




Especially about the future...




Metal demand (tonnes / year)

Our understanding of future mineral demand Is
Improving
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But our understanding of future regional mineral

supply is limited
Existing models poorly capture:

* Brownfield Expansion

» Greenfield exploration and regional likelihood

of discovery

» Mineral co-production

» Production scheduling & resource valuation

* Regional likelihoods of discovery

« Changing regional enablers and constraints

for resource development

UTS

Example model with the illusion of good regional predictive capability

30

N
(%]

N
o

10 -

Modlelled Production (Mt Cu)
(=Y
(%, ]

wv

0 4

100%
| 80%
| 60%
| a0%
| 20%
0%

| ®mAustralia
@ China
| B Mexico
[ USA
[ Rest of World

1900 1920

@ Chile
B FSU/Russia
@ Peru

[ Zambia

1940 1960 1980 2000 2020 2040 2060 2080 2100




We still don’t know much about future land
transformations of mining

Where will they occur?
When will they occur?

What impacts will they have?



There must be a better way...
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But we are still only scratching the surface in terms
of mineral exploration
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We can determine the likely characteristics of
undiscovered resources
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We can evaluate where undiscovered deposits might
be hiding

PERMISSIVE AREA (1,000 KM?)
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We can estimate the potential costs of extraction

Net Present-day Value (AU $M)

s Walsh et al., 2020. Resources Policy 66: 101598.

549.91




And the potential rate of extraction

Derived Taylor's Rule Functions for Copper Resources
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Primary, Exploration Mining and Mineral Supply Scenario (PEMMSS) model

« Transparent, open source model being developed in python

« Aim is to leverage big, dumb data and turn it into concise, smart data

Recognising that all models are wrong, some are useful.

« Scenarios generated will improve regional understanding of future
natural resource burdens of mining such as water consumption and
land-use change impacts

Developed in collaboration with Stefan Pauliuk (Uni. of Freiburg),
Stefanie Klose (Uni. of Freiburg) and Mohan Yellishetty (Monash
University)
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For further information:

stephen.northey@uts.edu.au

Topics touched on:

Spatial distribution of mineral resources
Regional Water and Climate Risks
Mining Land Use Change

Mineral resource datasets

Advanced Scenario Modelling



